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Received: 6 August 2008 / Accepted: 3 March 2009 / Published online: 19 March 2009
© Springer Science+Business Media, LLC 2009

Abstract Computation time is an important performance
characteristic of computer vision algorithms. The paper
shows how existing (slow) binary decision algorithms can
be approximated by a (fast) trained WaldBoost classifier.

WaldBoost learning minimises the decision time of the
classifier while guaranteeing predefined precision. We show
that the WaldBoost algorithm together with bootstrapping
is able to efficiently handle an effectively unlimited number
of training examples provided by the implementation of the
approximated algorithm.

Two interest point detectors, the Hessian-Laplace and the
Kadir-Brady saliency detectors, are emulated to demonstrate
the approach. Experiments show that while the repeatability
and matching scores are similar for the original and emu-
lated algorithms, a 9-fold speed-up for the Hessian-Laplace
detector and a 142-fold speed-up for the Kadir-Brady de-
tector is achieved. For the Hessian-Laplace detector, the
achieved speed is similar to SURF, a popular and very
fast handcrafted modification of Hessian-Laplace; the Wald-
Boost emulator approximates the output of the Hessian-
Laplace detector more precisely.
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1 Introduction

In this paper, we propose a novel way of speeding up ex-
isting binary decision processes, such as detectors or two-
class classifiers. We show that large efficiency gains are ob-
tained automatically, by using a statistical machine learning
method that produce a fast and accurate approximation of
the original process. The approach is successfully demon-
strated on two commonly-used interest point detectors. Nev-
ertheless, the approach is general and is applicable to other
areas e.g. edge detection.

Standard learning algorithms like SVM, AdaBoost or
neural networks are designed primarily with the objective of
error minimisation and generalisation to unseen data; small
training size performance is an important concern. Typi-
cal evaluation of learning algorithms reflects this focus—
measures like the precision-recall curve or the false positive
and the false negative rates are usually computed on a test
set. However, for the problem of efficient approximation,
another aspect of the trained classifier becomes critical—the
time-to-decision, a property directly optimised by very few
machine learning methods.

Another uncommon feature of our setting is the training
set size. Since our objective is to learn an emulator of an
existing binary-decision process, labelled training samples
are obtained by running the process on unlabelled data. If
unlabelled data are easily accessible, which is common, a
training set of arbitrary size can be collected at effectively
zero cost. The speeding up problem thus becomes a prob-
lem of learning the algorithm’s outputs on the (very large)
training set while optimising the classification speed.

Very few approaches consider time-to-decision as an in-
tegral part of the learning task. In this work, the WaldBoost
learning algorithm (Šochman and Matas 2005) was adopted
as it handles the precision-speed trade-off automatically and
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produces a quasi-optimal sequential classifier minimising
the decision time while guaranteeing the predefined emu-
lation precision. The user influences the emulation process
by defining suitable feature sets from which the emulator is
built and by specifying constraints on the classifier’s preci-
sion.

We demonstrate the framework by emulating two in-
terest point detectors, Hessian-Laplace (Mikolajczyk and
Schmid 2004) and Kadir-Brady (Kadir and Brady 2001)
saliency detector. The Hessian-Laplace is a state-of-the-art
detector of blob-like structures. Moreover, a handcrafted
simplified version of Hessian-Laplace called SURF (Bay
et al. 2008), designed for maximum speed, is available for
comparison. The Kadir-Brady detector incorporates entropy
measure to find salient regions which has been success-
fully used in several recognition tasks (Fergus et al. 2005;
Zhu et al. 2006).

The contributions of the paper are: (i) an introduction of a
general method for improving performance of computer vi-
sion algorithms by a machine learning method, (ii) showing
how to apply WaldBoost learning algorithm for emulation
of interest point detectors, (iii) impressive speed-up of one
(Hessian-Laplace) and two (Kadir-Brady) orders of magni-
tude respectively for the emulated detectors, (iv) a detector
comparable in performance and speed with the SURF detec-
tor, a de facto standard for very fast interest point detection.

The rest of the paper is structured as follows. First a brief
state of the art overview is given in Sect. 2. The approxi-
mation of a black-box binary decision algorithm by a Wald-
Boost classifier is discussed in Sect. 3. Application of the
approach to interest point detection is described in Sect. 4.
Experiments are presented in Sect. 5 and the paper is con-
cluded in Sect. 6. A conference version of this paper ap-
peared in Šochman and Matas (2007).

2 State of the Art

Learning to Be Fast The history of the formulation of a
classification task with time-to-decision vs. precision trade-
off dates back to Wald’s sequential analysis (Wald 1947).
Wald posed the problem as a constrained optimisation and
found a quasi-optimal solution to it—the sequential proba-
bility ratio test (SPRT). Wald’s theory assumes knowledge
of the class conditional probabilities and it does not con-
sider learning and estimation issues. The theory of sequen-
tial decision-making has been further developed and en-
riched (Siegmund 1985) and is now used as a basic and
well known tool in statistics. An overview of computer vi-
sion methods based on the SPRT can be found in Matas and
Šochman (2007).

In 1987, Rivest (1987) studied learnability of decision
lists (which could be seen as sequential classifiers) in the

context of Boolean functions but without optimising the
evaluation time. Baker and Nayar (1996) looked at the prob-
lem of efficiency of classification in the context of multi-
class classification, where the task is to effectively distin-
guish one class out of many. To this end, they developed
a theory of pattern rejectors which can be interpreted as
sequential classifiers in the class space. A practical learn-
ing approach to the time-to-decision vs. precision trade-off
has been proposed by Viola and Jones (2001), who build
an ordered set of increasingly complex classifiers that were
applied sequentially to a progressively smaller fraction of
the data. The “classifier cascade” method requires the user
to define the complexities of individual classifiers and does
not optimise the time vs. precision trade-off directly. Con-
sequently, many variations on the method have appeared in
the literature (Xiao et al. 2003; Huang et al. 2007; Brubaker
et al. 2008). The SoftCascade (Bourdev and Brandt 2005)
algorithm presents a systematic but a rather brute force ap-
proach to the precision vs. speed optimisation problem.

Learning Interest Point Detectors There has been much
work on the general interest point detection problem (Miko-
lajczyk et al. 2005). To our knowledge, learning techniques
have been applied only to parameter tuning, not to the whole
process of interest point detector design. Lepetit et al. (2005)
treated interest points matching as a classification problem,
learning the descriptor. Rosten and Drummond (2006) used
learning techniques to find parameters of a hand-designed
tree-based Harris-like corner classifier. Their motivation was
to speed-up the detection process, but the approach is limited
to the Harris corner detection. Martin et al. (2004) learned a
classifier for edge detection, but without considering the de-
cision time and with significant manual tuning. They tested a
number of classifier types with the conclusion that a boosted
classifier was comparable in performance to other classifiers
and was preferable for its low model complexity and low
computational cost.

The most closely related approach to our method is that
of Dollár et al. (2006) who use learning techniques to train
an edge detector. The paper shows impressive examples
of applications of such detector. Nevertheless, Dollár et al.
were primarily concerned with the accuracy of the detector
and did not consider speed. There has also been significant
interest in speeding up various interest point detectors man-
ually, i.e. without training. Grabner et al. (2006) proposed
a fast version of the SIFT detector and Bay et al. (2008)
proposed a fast approximation-based interest point detector
called SURF.

3 Emulating a Binary-Decision Black Box Algorithm
with WaldBoost

The main idea of the proposed approach is to look at an ex-
isting algorithm as a black box performing some useful bi-
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Fig. 1 The proposed learning
scheme

nary decision task. The black box algorithm is run on a large
dataset of images which provides almost unlimited num-
ber of training samples which are used to train a sequential
classifier emulating the black box algorithm behaviour. The
user’s optimisation effort is thus transformed into a much
simpler task of finding a suitable set of features which are
used in the WaldBoost training.

The main components of the proposed learning system
are shown in Fig. 1. The black box algorithm provides pos-
itive and negative outputs that form a labelled training set.
The WaldBoost learning algorithm (see Sect. 3.1) builds a
classifier sequentially and when new training samples are
needed, it bootstraps the training set by running the black
box algorithm on new images. Only the samples undecided
by the current classifier are used for further training. The re-
sult of the process is a WaldBoost sequential classifier which
emulates the original black box algorithm.

The training loop uses the fact that the black box algo-
rithm can provide practically unlimited number of labelled
training samples. Note that this is in contrast to commonly
used human labelled data which are difficult to obtain. The
bootstrapping technique (Sung and Poggio 1998) is used to
effectively update the training set.

Next, a brief overview of the WaldBoost learning algo-
rithm, the core unit in the emulation scheme, is given.

3.1 WaldBoost

WaldBoost (Šochman and Matas 2005) is a greedy learn-
ing algorithm which finds a quasi-optimal sequential strat-
egy minimising the average evaluation time while preserv-
ing required quality of the decision for a given binary deci-
sion problem. More formally, WaldBoost finds a sequential
decision strategy S∗ such that

S∗ = arg min
S

T̄S subject to βS ≤ β, αS ≤ α (1)

for specified α and β . T̄S is average time-to-decision mea-
sured in the number of measurements evaluated, αS is false
negative and βS false positive rate of a sequential strategy S.

A sequential decision strategy is a sequence of deci-
sion functions S = S1, S2, . . . , where St : (x1, . . . , xt ) →
{−1,+1, �}. The strategy S takes one more measurement,
xt , at a time and in step t makes a decision St based on
(x1, . . . , xt ). The ‘�’ sign stands for a “continue” (do not de-
cide yet) decision. If a decision is ‘�’, xt+1 is measured and
St+1 is evaluated. Otherwise, the output of S is the class re-
turned by St .

To find the optimal sequential strategy S∗ to the prob-
lem (1), the WaldBoost algorithm combines the AdaBoost
algorithm (Schapire and Singer 1999) for measurement se-
lection and Wald’s sequential probability ratio test (SPRT)
(Wald 1947) for finding thresholds which are used for mak-
ing the decisions.

The SPRT was proved to be an optimal strategy for the
problem (1). The SPRT is very simple—in each step it com-
pares likelihood ratio with a fixed threshold. Such test is
easy to evaluate for i.i.d. measurements where the likelihood
ratio is easy to estimate. However, when the measurements
are not i.i.d., the likelihood ratio estimation easily becomes
intractable and the ordering of the measurements has to be
specified. To overcome these problems, WaldBoost uses the
AdaBoost algorithm as a measurement selector and also for
projecting measurements (see (2)) to a 1D subspace where
likelihood ratio estimation is tractable. This is justified by
the fact that the response of AdaBoost, ft (x), converges to
the likelihood ratio (Friedman et al. 1998).

The AdaBoost algorithm greedily selects weak classifiers
h(t): X → R which are combined linearly into a strong clas-
sifier

fT (x) =
T∑

t=1

h(t)(x). (2)

The domain-partitioning weak classifiers (Schapire and
Singer 1999) are used, each one based on a single (visual)
feature (see Fig. 2). The response of the weak classifiers
found by the AdaBoost algorithm are used as measurements
for the sequential strategy in the WaldBoost algorithm.
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Fig. 2 The domain-partitioning weak classifier. The response of fea-
ture q(x) on object x is partitioned into bins j = 1, . . . ,K . The left-
most and the rightmost bins cover respective half-spaces. In each bin j ,
the response of the weak classifier h(x) is computed from the sum of
positive (Wj

+) and negative (Wj
−) weights of training samples falling

into the bin. To avoid numerical problems, a smoothing factor ε is used
(Schapire and Singer 1999)

The input of the learning algorithm (Algorithm 1) is a
pool of positive and negative samples P , a set of features F
—the building blocks of the classifier, and the bounds on
the final false negative rate, α, and the false positive rate, β .
The output is an ordered set of weak classifiers h(t), t ∈
{1, . . . , T } (i.e. measurements) and a set of SPRT thresh-
olds θ

(t)
A , θ

(t)
B optimising (1) for all lengths t = 1, . . . , T .

The thresholds are applied directly to the strong classifier
response ft (not to the likelihood ration as in SPRT) and are
set to ±∞ if no threshold was found in some learning step.

In the learning, the selection of a weak classifier is by far
the most time consuming operation. To keep the speed and
memory requirements of the training process acceptable, a
subset T is sampled out of the large sample pool P ; the
selection of the best weak classifier is based on T . The SPRT
thresholds are efficiently computed on the whole pool.

The sequential nature of the WaldBoost classifier also af-
fects the sample pool and the training set during the learning.
In each round, the already decidable samples in the pool (see
explanation for WaldBoost evaluation below) are removed
from the learning process and a new training set T is sam-
pled from the reduced pool.

During evaluation of the classifier (Algorithm 2) on a new
sample x, one weak classifier is evaluated at time t and its re-
sponse is added to the strong classifier response function ft .
It is then compared to the corresponding thresholds and the
sample is either classified as positive or negative, or the next
weak classifier is evaluated and the process continues

St (x) =

⎧
⎪⎪⎨

⎪⎪⎩

+1, ft (x) ≥ θ
(t)
B ,

−1, ft (x) ≤ θ
(t)
A ,

continue, θ
(t)
A < ft (x) < θ

(t)
B .

(3)

If a sample x is not classified even after evaluation of the
last weak classifier, a user defined threshold γ is imposed on
the real-valued response fT (x).

Algorithm 1 WaldBoost Learning
Input:

– sample pool P = {(x1, y1), . . . , (xm, ym)}; xi ∈ X , yi ∈
{−1,1},

– set of features F = {qs},
– desired final false negative rate α and false positive rate β ,
– the number of iterations T .

Sample randomly the initial training set T from the pool P
for t = 1, . . . , T

1. Find h(t) by AdaBoost using F and T and add it to the
strong classifier

ft (x) =
t∑

r=1

h(r)(x)

2. Find decision thresholds θ
(t)
A and θ

(t)
B for ft using P

3. Bootstrap: update the sample pool P and sample a new
training set T

end
Output: ordered set of weak classifiers h(t) and

thresholds θ
(t)
A and θ

(t)
B .

Algorithm 2 WaldBoost Classification

Given: h(t), θ
(t)
A , θ

(t)
B , γ (t = 1, . . . , T )

Input: a classified object x.
for t = 1, . . . , T

If ft (x) ≥ θ
(t)
B , classify x to the class +1 and terminate

If ft (x) ≤ θ
(t)
A , classify x to the class −1 and terminate

end
If fT (x) > γ , then classify x as +1 else classify x as −1.

In our interest point detection application of WaldBoost,
an arbitrary number of both positive and negative samples
is available for bootstrapping. However, when positive sam-
ples were bootstrapped, i.e. early positive classification was
allowed in (3), all early positive decisions had confidence
close to θ

(t)
B and precise localisation via the non-maximum

suppression algorithm (see Sect. 4) was not possible. Thus,
we adopted the same asymmetric version of WaldBoost as
used in Šochman and Matas (2005), i.e. setting β to zero.
The strategy becomes

St (x) =
{

−1, ft (x) ≤ θ
(t)
A ,

continue, θ
(t)
A < ft (x),

(4)

and only decisions for the negative class are made early dur-
ing the sequential evaluation of the classifier. A (rare) pos-
itive decision can only be reached after evaluating all T

classifiers in the ensemble. For problems where the non-
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maximum suppression algorithm is not applied, the strat-
egy (3) can be used directly.

In the context of fast black box algorithm emulation,
what distinguishes training for different algorithms is the
feature set F . A suitable set has to be found for every em-
ulated algorithm. The set F can be very large and does
not need to be homogeneous, i.e. it may contain Haar-like
features (Viola and Jones 2001), LBP (Ojala et al. 2002;
Froba and Ernst 2004), histograms of gradients, etc. The
WaldBoost algorithm selects a suitable subset while opti-
mising the time-to-decision. WaldBoost minimises the aver-
age number of evaluated measurements which is the same as
minimisation of time-to-decision only when computational
complexity of the different types of features is (roughly) the
same. The condition is satisfied by the feature set F adopted
in the experiments.

4 Emulated Scale Invariant Interest Point Detectors

In order to demonstrate the approach, two similarity-in-
variant interest point detectors have been chosen:
(i) Hessian-Laplace (Mikolajczyk and Schmid 2004) detec-
tor, which is a state of the art similarity-invariant detector,
and (ii) Kadir and Brady (2001) saliency detector, which has
been found valuable for categorisation (Fergus et al. 2005;
Zhu et al. 2006), but is about 100× slower than the Hessian-
Laplace detector. Binaries of both detectors were down-
loaded from the web page (Mikolajczyk 2008a). We fol-
lowed standard test protocols for evaluation as described
in Mikolajczyk et al. (2005). Both detectors are similarity-
invariant (not affine), so the detection can be easily imple-
mented by running a sequential test at each position and
scale in the scanning window approach (Viola and Jones
2001).

For both detectors, the set F includes the Haar-like fea-
tures proposed by Viola and Jones (2001), plus a centre-
surround feature from Lienhart and Maydt (2005), which
has been shown to be useful for blob-like structure detec-
tors (Grabner et al. 2006). Haar-like features were chosen
for their high evaluation speed (due to integral image repre-
sentation) and because they have a potential to emulate the
Hessian-Laplace detections (Grabner et al. 2006). The only
difference to the original Viola and Jones feature set is that
the feature response is not normalised by a window standard
deviation since the intensity contrast is important for both
Hessian-Laplace and Kadir-Brady detectors.

For the entropy-based Kadir-Brady saliency detector em-
ulation, however, the Haar-like features were not sufficiently
accurate. To overcome this we introduced “variance” fea-
tures based on the integral images of squared intensities.
They are computed as an intensity variance in a given rec-
tangle.

Fig. 3 Overlap definition for the non-maximum suppression scheme.
For details, see the text

An essential part of a detector is the non-maximum sup-
pression algorithm. Here the input to the non-maximum sup-
pression differs from that obtained in the original detectors.
Instead of having a real-valued feature response over whole
image, sparse responses are returned by the WaldBoost de-
tector. The accepted positions get the real-valued confidence
value fT , but the rejected positions have the “confidence”
ft around the θ

(t)
A value depending on the time t when they

have been rejected. These values are incomparable, thus a
typical quadratic interpolation and a local maximum search
cannot be applied. Instead, the following algorithm is used.

Any two detections are grouped together if their overlap
is higher than a given threshold (parameter of the applica-
tion). Only the detection with maximal fT in each group is
preserved. The overlap computation is schematically shown
in Fig. 3. Each detection is represented by a circle inscribed
to the corresponding scanning window (Fig. 3, left). For two
such circles, let us denote the radius of the smaller circle
as r , the radius of the bigger one as R, and the distance of
the circle centres as dc. Exact overlap can be easily com-
puted in two cases. First, when the circle centres coincide,
the overlap is o = r2/R2. It equals to one for two circles of
the same radius and decreases as the radii become different.
Second, when two circles have just one point in common
(dc = r + R), the overlap is zero. These two situations are
marked by blue dots in Fig. 3, right. Linear interpolation
(blue solid line in Fig. 3, right)

o = r2

R2

(
1 − dc

r + R

)
(5)

is used to approximate the overlap between these two states.

5 Experiments

Two detectors are emulated in the experiments: Hessian-
Laplace (Mikolajczyk and Schmid 2004) and Kadir-Brady
(Kadir and Brady 2001) saliency detector. The Hessian-
Laplace is a state-of-the-art detector of blob-like structures
used in many applications. Its simplicity allows easier analy-
sis of obtained results. The Kadir-Brady detector incorpo-
rates entropy measure to find salient regions. It performs
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Fig. 4 Selecting the false negative rate α. (a) The average evalua-
tion speed for several values of α. All compared detectors are able
to achieve similar number of correspondences and (b) repeatabil-
ity score, (c)—measured for T = 20 for all detectors on the BOAT

sequence. (d) The number of detections of the WaldBoost emulator
on the first image from the BOAT sequence as a function of the α pa-
rameter, (e) the number of detections of Hessian-Laplace as a function
of the final threshold

rather poor in classical repeatability tests (Mikolajczyk et al.
2005) but has been successfully used in several recognition
tasks. However, its main weakness for practical applications
is its very long computation time in order of minutes per
image. Standard versions of the detectors provided by their
authors were downloaded from the interest point detection
web page (Mikolajczyk 2008a).

To collect positive and negative samples for training,
an emulated detector is run on a set of images of various
sizes and content (nature, urban environment, hand drawn,
etc.). To create the sample pool we used 1300 images ran-
domly chosen from the non-skin image database introduced
in Jones and Rehg (2002). The detector assigns a scale to
each detected point. Square patches of the size twice the
scale were used as positive samples. Negative samples were
collected from the same images at positions and scales not
covered by positive samples.

The size of the training set T was 10,000 (half positive
and half negative samples) in all experiments. The train-
ing set was sampled from the pool P by the quasi-random
weighted sampling + trimming method (QWS+) (Kálal
et al. 2008). The QWS+ sampling has been shown to reduce
the variance of hypothesis error estimate and to improve the
classifier performance compared to other sampling strate-
gies. Moreover, with QWS+ sampling, AdaBoost perfor-
mance becomes relatively insensitive to the training set size.

5.1 Hessian-Laplace Emulation

The Hessian-Laplace detector was used with threshold 1000
to generate the training set. The value was empirically cho-
sen to achieve similar number of detections as in Mikola-
jczyk et al. (2005). The same threshold was used throughout
all the experiments for both learning and evaluation.

The detector has been assessed in standard tests proposed
by Mikolajczyk et al. (2005). The ground truth is given by
a homography between the first and the other images in the
sequence. The tests are based on two measures: (i) the re-
peatability measure, (ii) the matching score.

(i) Repeatability Measure To assess the quality of
an interest point detector in varying acquisition condi-
tions of the same scene the repeatability measure is used
(Mikolajczyk et al. 2005). The measure is defined for two
sets of elliptical regions—one set for one image. It is com-
puted as the ratio between the number of region-to-region
correspondences and the smaller of the number of regions
in the pair of images. The mutual correspondence of two
regions is claimed when the overlap error is smaller than
some threshold. The measure takes into account several
other technical issues such as uniqueness of matches and
is fully defined by a Matlab script (Mikolajczyk 2008a). In
all experiments, the overlap error threshold is fixed to 40%
as in most of the experiments in Mikolajczyk et al. (2005).

(ii) The Matching Score test aims at predicting perfor-
mance of the detectors in matching and correspondence
finding applications. The matching score, defined in Mikola-
jczyk et al. (2005), is the number of correct matches divided
by the smaller number of correspondences in the common
part of the two images. A pair of elliptical regions is counted
as a correct match if (1) their overlap error is smaller than
40%, and (2) their descriptors are sufficiently similar (for
details, see Mikolajczyk et al. 2005).

Selection of the False Negative Rate α The value of α bal-
ances the trade-off between WaldBoost detector speed and
precision. Figures 4(a)–(c) shows performance of the detec-
tor for several α values on the BOAT sequence. The value
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of α also significantly influences the number of detections
before the final thresholding by γ (Fig. 4(d)).

For a certain range of α values, it is possible to set
the final threshold γ (Algorithm 2) to reach the number
of correspondences similar to that of the emulated detector
(Fig. 4(b)). With such threshold γ , the repeatability and the
number of correct correspondences is almost identical for all
tested values of α throughout the test sequence (Fig. 4(c)).

Increasing α leads to faster evaluation (Fig. 4(a)) but also
to fewer detections (Fig. 4(d)) before imposing the final
threshold γ . In some applications it may be useful to pro-
duce more detections by changing the γ threshold.

Similarly to the original detector, the WaldBoost emula-
tor imposes a threshold on the classifier response. We set
α to 0.2 as a compromise: the classifier is already very fast
(see Table 1) and yet the user can still control the number

of detections by changing the γ threshold similarly to the
original detector (Fig. 4(e)). Thus the value α = 0.2 is used
in all following experiments. The final threshold γ is the
same in all experiments and is set empirically so that the de-
tector produces similar number of detections as the original
Hessian-Laplace detector.

Classifier Length Empirically we set the length of the clas-
sifier to T = 20 (number of weak classifiers). Longer clas-
sifiers slow down the evaluation (see Fig. 4(a)) and do not
bring significant improvement in performance.

Repeatability The repeatability measure of the trained
WaldBoost detector has been compared with the origi-
nal Hessian-Laplace detector on standard image sequences
with variations in scale and rotation, blur, affine deforma-

Fig. 5 Repeatability comparison of the Hessian-Laplace detector, its WaldBoost emulation and the SURF detector on Mikolajczyk’s dataset
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Fig. 6 Matching score comparison of the Hessian-Laplace detector, its WaldBoost emulation and the SURF detector on Mikolajczyk’s dataset

tion, light change and JPEG compression from Mikolajczyk
(2002). The results are shown in Fig. 5. The WaldBoost de-
tector achieves similar repeatability and number of corre-
spondences as the original Hessian-Laplace detector.

Matching Score For the same sequences, the matching
score of the Hessian-Laplace detector ant its WaldBoost em-
ulator is shown in Fig. 6. The WaldBoost detector achieves
slightly better matching score than the original algorithm.

Speed The WaldBoost classifier evaluates on average 1.7
features per examined position and scale. Unsurprisingly,
this is much less than any reported speed for face detec-
tion (Šochman and Matas 2005). The evaluation times are
compared in Table 1. The WaldBoost emulator is about nine

times faster than the Hessian-Laplace detector with a rather
careful design (Mikolajczyk 2008b).

Classifier Structure The Hessian-Laplace detector finds
blob-like structures. The structure of the trained WaldBoost
emulation should reflect this property. As shown in Fig. 7,
the first selected weak classifier is of the centre-surround
type and gives high responses to blob-like structures with
high contrast between central part and its surrounding (the
feature value is average intensity in the central part minus
average intensity in the surrounding part).

Coverage The output of the trained WaldBoost emulation
of Hessian-Laplace is compared to the original algorithm
in Fig. 8(a). As in the repeatability experiment two sets
of detections are compared—the original detections and the
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Fig. 7 Top row. First centre-surround and variance feature found in
WaldBoost Hessian-Laplace (left) and Kadir-Brady (right) emulated
detectors. The background image is visualised as E(|xi − 127.5|) and

E(xi) respectively, where E() is the average operator and xi is the
i-th positive training example. Bottom row. Bin responses in the corre-
sponding domain-partitioning weak classifiers (see Fig. 2)

Fig. 8 Comparison of the outputs of the original and WaldBoost-
emulated (a) Hessian-Laplace and (b) Kadir-Brady saliency detectors.
The white circles show repeated Hessian-Laplace detection. The black
circles highlight the original detections not found by the WaldBoost
detector. Note that for most of missed detections there is a nearby de-
tection on the same image structure. The accuracy of the emulation is
80% for Hessian-Laplace and 90% for Kadir-Brady saliency detector.

Note that the publicly available Kadir-Brady algorithm does not detect
points close to image edges. (c) Missed Hessian-Laplace detections
(left) and manually found corresponding WaldBoost detections (right).
(d) They are not found as correspondences, because Mikolajczyk’s
overlap function prefers smaller detections (see the discussion in the
text)

WaldBoost emulator detections (with γ = −∞). Since the
comparison works on a single image, the ground truth trans-
formation matrix is identity.

The white circles show the original detections with a cor-
respondence found among the WaldBoost detections. The
black circles show the original detections not found by
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Fig. 9 Rotation and scale invariance of the WaldBoost Hessian-
Laplace emulator. Top row: Repeatability on rotated first images from
(a) BOAT, and (b) EAST_SOUTH sequences for the Hessian-Laplace de-

tector (HL) and its WaldBoost emulator (WB). Bottom row: Repeata-
bility on scaled first images from (c) BOAT, and (d) EAST_SOUTH se-
quences

Table 1 Speed comparison on the first image (850 × 680) from the
BOAT sequence. The speed-up on another images is similar

Hessian-Laplace Kadir-Brady

Original 0.9 s 1 m 48 s

SURF 0.09 s −
Speed-up 10× −
T̄s∗ 3 −
WaldBoost 0.10 s 0.76 s

Speed-up 9× 142×
T̄s∗ 1.7 2.2

WaldBoost. Note that most of the missed detections have a
correct detection nearby, so the corresponding image struc-
ture is actually found. The percentage of repeated detections
of the original algorithm is 80%.

The WaldBoost detector may seem to miss consistently
the large regions. Figure 8(c) shows manually selected
WaldBoost regions close to the original detections—the
“tree blob” is in fact detected. The real problem is in the
way the correspondence overlap is computed. To compute
the overlap of two detected points, Mikolajczyk et al. (2005)
first normalise their scale to 30 pixels. This way, the prob-
lem of unnecessary large regions which would almost al-
ways have large overlaps is avoided. However, as shown
in Fig. 8(d), this normalisation returns small overlap when
large regions are only slightly misplaced. This problem is

general and appears in all region detection papers which
use the Mikolajczyk’s repeatability measure. To conclude,
the real emulation accuracy is in fact higher than 80%.

Rotational Invariance One of the properties of the emu-
lated Hessian-Laplace detector which should be preserved
is its rotational invariance. A learning approach can achieve
rotational invariance with non-rotationally invariant features
by introducing synthetically rotated positive samples into
the training set. The results in Fig. 9 (top row) show that the
rotational invariance is preserved even without introducing
synthetic training samples. This is probably a consequence
of the large training pool which is available. Instead of intro-
ducing rotated samples synthetically, the statistics are cov-
ered by collecting huge number of samples.

Scale Invariance Similarly, the detector invariance to scale
changes has been tested. The emulated detector achieves
similar scale invariance as the original algorithm as shown
in Fig. 9 (bottom row).

Comparison to SURF The WaldBoost emulator has been
compared with the SURF detector (Bay et al. 2008) which
is a simplification of the Hessian-Laplace detector, manu-
ally designed for maximum speed. The SURF is commonly
used as a good compromise between speed, accuracy and
repeatability.

The comparison of the repeatability and the matching
score of all three detectors is shown in Figs. 5 and 6. All
the detectors has been set to produce similar number of de-
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Fig. 10 Comparison of Hessian-Laplace (a), its WaldBoost emulator (b) and SURF detector (c) outputs on the first image from the BOAT sequence.
WaldBoost returns similar distribution of points as the emulated Hessian-Laplace. The SURF points are distributed differently

tections on the first image of the EAST_SOUTH sequence.
Neither of the fast detectors approximates the original de-
tector perfectly. Yet, both could be said to achieve similar
statistics as the original Hessian-Laplace detector, deviating
slightly at different sequences.

The evaluation speeds of the detectors are compared in
Table 1. The WaldBoost detector achieves similar evalua-
tion speed as the manually tuned SURF detector. However,
since most of the computational components are the same
in both detectors, the average evaluation time T̄S∗ = 1.7 for
WaldBoost and T̄S∗ = 3 for SURF suggests that further code
optimisation of the WaldBoost detector could lead to even
faster implementation.

An important difference between the SURF detector and
the Hessian-Laplace WaldBoost emulator is that the first
one is a simplification while the other is an emulation. The
SURF produces different set of regions compared to the
Hessian-Laplace detector. This could be verified by com-
puting the coverage as in Fig. 8. For the SURF detector only
49.7% coverage is reached compared to 80% of the Wald-
Boost detector. The difference in detectors outputs is shown
in Fig. 10.

Summary To conclude, the WaldBoost emulator of the
Hessian-Laplace detector is able to detect points with sim-
ilar repeatability and slightly higher matching score while
keeping the rotational and scale invariance of the original
detector. Moreover, the WaldBoost emulator was able to in-
crease nine times the speed of detection compared to the
original detector. When compared to the manually tuned
SURF detector, similar repeatability, matching score and
evaluation speed characteristics are reached. However the
WaldBoost detector emulates the Hessian-Laplace detector
significantly more closely.

5.2 Fast Saliency Detector

The emulation of the Kadir-Brady saliency detector (Kadir
and Brady 2001) uses the same image pool for training as the

WaldBoost Hessian-Laplace emulator. The saliency thresh-
old of the original detector was set empirically to 2 to collect
a sample pool of a reasonable size. Higher value of threshold
also helps to limit the positive examples only to those with
higher saliency. As opposed to the Hessian-Laplace emula-
tion, where rather low threshold was chosen, it is meaning-
ful to use only the top most salient features from the Kadir-
Brady detector since its response corresponds to the impor-
tance of the feature.

The Haar-like feature set was extended by the “variance”
feature described in Sect. 4. The training was run for T = 20
(training steps) with α = 0.2 and β = 0 as in the Hessian-
Laplace experiment.

Publicly available version of Kadir-Brady detector has
several drawbacks which need to be considered in the exper-
imental evaluation. Due to relatively wide search for local
maximum in the scale space, no detections near the image
border are found. This results in a strip around image bor-
der where no detections are returned (see Fig. 8(b)). Also
the scale range of detections is limited. In all following ex-
periments, WaldBoost emulator detections are filtered by the
same restrictions for the comparison reasons. However, the
WaldBoost emulator of the Kadir-Brady detector does not
have these restrictions inherently.

Repeatability and Matching Score The same experiments
as for the Hessian-Laplace detector have been performed.
The repeatability and the matching score of the Kadir-
Brady detector and its WaldBoost emulation on BOAT and
EAST_SOUTH sequences are shown in Fig. 11. Similar per-
formance to the Kadir-Brady detector is reached for similar
number of correspondences and correct matches on both se-
quences.

Speed The main advantage of the emulated saliency de-
tector is its speed. The classifier evaluates on average 2.2
features per examined location and scale. Table 1 shows that
the emulated detector is about 142× faster than the original
detector.
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Fig. 11 Repeatability comparison of the Kadir-Brady detector and its WaldBoost emulation on Mikolajczyk’s dataset

Classifier Structure Our early experiments showed that the
Haar-like features are not suitable to emulate the entropy-
based saliency detector. With the variance features, the train-
ing was able to converge to a reasonable classifier. In fact,
the variance feature is chosen for the first weak classifier in
the WaldBoost ensemble (see Fig. 7). The bin responses of
the weak classifier show that higher variations are preferred.

Coverage The outputs of the WaldBoost saliency detector
and the original algorithm are compared in Fig. 8(b). The
coverage of original detections is 90%.

Rotational and Scale Invariance Invariance to rotation and
scale changes of the WaldBoost emulator and the Kadir-
Brady detector are compared in Fig. 13. Due to very differ-
ent approaches in computing the detectors responses (Haar-

like features vs. entropy), the WaldBoost emulator is not
able to reach perfect rotation invariance on images rotated
by 90 degrees but is able to keep similar rotational invari-
ance otherwise. Moreover, the feature-based approach of the
WaldBoost emulator results in slightly better scale invari-
ance of the detector. This can be probably explained by the
instability of the entropy based Kadir-Brady detector espe-
cially at small scales where the probabilities are difficult to
estimate. It is shown also in Hare and Lewis (2004) that their
difference-of-Gaussian detector is more robust to a range of
transformations than the Kadir-Brady detector.

Summary To conclude, the WaldBoost training is able
to emulate Kadir-Brady detector generally with similar
repeatability, matching score and robustness to rotation
changes, while improving slightly its scale invariance. But,
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Fig. 12 Matching score comparison of the Kadir-Brady detector and its WaldBoost emulation on Mikolajczyk’s dataset

most importantly, the decision times of the emulated de-
tector are about 142 times lower than that of the original
algorithm. That opens new possibilities for using the Kadir-
Brady detector in time sensitive applications.

6 Conclusions and Future Work

In this paper, a general learning framework has been pro-
posed for speeding up existing binary decision processes by
a sequential classifier which is learnt by the WaldBoost al-
gorithm.

Two interest point detectors, the Hessian-Laplace and the
Kadir-Brady saliency detector, served as examples of em-
ulated algorithms. The experiments show similar repeata-
bility and matching scores of the original and emulating

algorithms. For both, the Hessian-Laplace and the Kadir-
Brady detectors, the WaldBoost emulation improved signif-
icantly the speed. The emulator was nine times faster for the
Hessian-Laplace detector and about 142 times faster for the
Kadir-Brady detector. In the case of the Kadir-Brady detec-
tor this speed-up opens new possibilities for using the detec-
tor in time sensitive applications. For the Hessian-Laplace
detector, the achieved speed is similar to SURF, a commonly
used Hessian-like fast detector; the WaldBoost emulator ap-
proximates the output of the Hessian-Laplace detector more
precisely.

The proposed approach is general and can be applied to
other algorithms as well. For future research, an interesting
extension of the methodology would be to train an emulator
which not only guarantees output similar to an existing algo-
rithm but which also possesses some additional quality like
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Fig. 13 Rotation and scale invariance of the WaldBoost Kadir-Brady
emulator. Top row: Repeatability on rotated first images from (a)
BOAT, and (b) EAST_SOUTH sequences for the Kadir-Brady detector

(Kadir) and its WaldBoost emulator (WB). Bottom row: Repeatability
on scaled first images from (c) BOAT, and (d) EAST_SOUTH sequences

insensitivity to certain acquisition conditions (e.g. motion
blur) or maximum performance in a particular environment
or task.
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